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Let P be a nonnegative perfect spline of degree /I un La. h J satisfying

P'iI(U)= P'''lhJ=O Ii O. "./1 II

We wish to approximate P from below in the r "norm by nonnegative splines of
degree /I - 1 with the same fixed knots as P We show that a unique best
approximation exists (differing. in general, from the best approximation without the
nonnegativity restriction), and describe the zero structure of the error function, In
addition, we discuss the semi-infinite programming approach and deduce
relationships with mononspllllcs and quadrature formulas, '19911 AeaJenlle Pre". Inc

INTRO[)CCTIO~

In this paper we consider a special one-sided approximation problem for
splines with fixed knots, with resect to the L I-norm. Such one-sided
problems have been considered by several authors, notably StrauB [10 l
Pinkus [8J and Micchelli and Pinkus [7} Micchelli and Pinkus prove
their results for more general spaces of functions, and consider, as does
StrauB, the setting in which the function to be approximated is "generalized
convex" with respect to the approximating subspace,

Our problem concerns the approximation from below of a special
generalized convex function, a nonnegative perfect spline, and, in contrast
to the works cited, we require the approximating splines to be nonnegative
as welL The result is that, whereas in the general case the error function
exhibits only double zeros, in our case we are forced to deal with higher­
order zeros in the knots. Indeed. a major part of Section I is devoted to a
careful study of these zeros. The appearance of higher-order zeros precludes
the possibility of applying the moment theory techniques developed in [7]:
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no similar theory involving higher derivatives seems to be available. Thus.
our work is closer in nature to that of StrauB.

We are unaware of papers of a similar nature devoted to problems of
approximation theory. In the context of semi-infinite programming, the
abstract optimization problem has been studied by Krabs [2]. A related
problem, that of approximation by linear combinations of functions with
nonnegative coefficients, was discussed by Marsaglia [4 J and by Krabs
[3], and is also treated in the book [2 J of Krabs. In our setting, this
situation arises only when the approximating splines are piecewise linear
(/I = 2). In this case the duality theory for such optimization problems is
useful (but not essential) in pinpointing the zeros of the error function.
Duality theory may be utilized for /I> 2 as well, to derive equivalent
conditions, in terms of positive linear functionals, for the optimal solution.
This is done in Section 4.

The connection between one-sided approximation and quadrature
formulas has long been known (see, e.g., [7, 10J and the papers cited
therein l, as has the relation to monosplines. Such a connection exists in our
case as welL as is described in Section 5.

The problem considered in this paper arose in the context of shape
preserving Lj-approximation [11], the approximation of a continuous
function in the Lj-norm from the convex cone of /I-convex functions. Using
a functional analytic approach, the problem of characterization is reduced
to the study of the zeros of a certain perfect spline P. A difficulty arises
when P fails to have a full set of zeros. In this case one may approximate
p from below by nonnegative splines having the same fixed knots, and sub­
stitute for the zeros of P the zeros of the error function. The nonnegativity
restriction is essential to these considerations.

In order to solve the one-sided approximation problem it was necessary
to develop and/or adapt various tools for dealing with high-order zeros of
splines. With few exceptions, this area has been avoided or neglected in the
literature of approximation theory--a not uncommon occurrence in
pertinent papers is to quote imprecisely the well-known Schoenberg­
Whitney Theorem [9]. By ignoring the possibility that. in limiting cases.
the relevant determinant can be positive when equality occurs in the
interlacing conditions, one risks exchanging rigor for convenience. In
extreme cases this may even put the validity of the assertions in doubt. In
this paper we have addressed this, and other, fine points of spline theory
in the context of the one-sided approximation problem, while striving for
generality in the techniques developed to deal with them. Thus, despite the
somewhat restricted nature of the problem addressed in these pages, we are
hopeful that the results and techniq ues presented here will find a wider
range of applicability than merely to the particular type of problem
considered here.
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1. ZEROS OF SPLINES

In this section we study the zeros of splines of degree /I 1, and of
differences of a perfect spline of degree /I and a spline of degree /I - I. In
contrast to the polynomial case, a spline of degree /1- I may have zeros of
order /I without vanishing identically. The presence of knots and the
appearance of zero intervals makes a special zero-counting procedure
necessary. The main theorem in this section is a kind of Budan· Fourier
theorem, giving an upper bound on the number of zeros in an interval
when the signs of the derivatives in the endpoints are known. We introduce
the concept of a "discretionary zero" and list several corollaries of the main
theorem, some, perhaps, of independent interest.

A spline of degree /I - I on [u, hJ with simple knots I I < ... < T.v in
(u, h) is a function of the form

1(1)= I:x,(I,--lj", I+ JiIl 1(1).
I I

( 1.1 )

where Jill I is a polynomial of degree at most /I - I and the truncated
power (I - I)"

t
I is defined as (I- 1)" I if I ;" I, and is zero otherwise. For

fixed knots I I' ... , I \, the (N + /I )-dimensional linear space of such splines
will be denoted by

S = 5( I I ' ...• I.\ j.

We will be primarily interested (for reasons that will be made clear in
Section 2) in splines that vanish identically outside of (I I' T.\). In this case
1 is most easily represented as

\ Jl

1(1) = I (",Mi(I),
, I

( 1.2)

where M, is the B-spline based on the knots I, • ... , I" II' with support in
[Ii' Ii. ,,] [9]. We define

The space of polynomials of degree at most m - 1 (and "ET-spaces" of
dimension m in general) have the property that no nontrivial element has
more than 111 - I zeros, counting multiplicities, one less than the dimension
of the space. This property is carried over to spaces of splines, provided
that the discontinuities in the (n - 1)st derivative and the presence of zero
intervals are taken into account.

Adhering to the zero-counting conventions described in [9], we count
the zeros of 1 E 5 and 1 E 50 as follows:
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(a) Isolated zeros. If .1'(0= ... =.1'1'" II(~)=O, .II"'I(~)*O, then ~ is
a zero of .I' of order (or multiplicity) m if ~ is an arbitrary point of [a, hJ
and m ~ n - 2, or if ~ does not coincide with a knot and 1Il~; n - 1. If
II;!( ~) = 0 (j = 0, ... , n - 2) then ~ is a zero of multiplicity 11 - I if sin ])

changes sign at ~; if sin :' 1 does not change sign at ~ (which can only
happen at a knot) then the multiplicity is n.

(b) Endpoint interval zeros. If .I' E So vanishes on an interval that
extends to an endpoint then each subinterval [I I' I I + I J S; [I I' I.y J on
whichI' vanishes counts as one zcro and. for .I' E S, the interval [a, I 11 or
[I \. hJ counts as n zeros.

(c) Interior interval zeros. Suppose that .I' vanishes identically on
[I/, InJ but is nonzero in at least one point of each of the two neighboring
subintervals. Then [I/.InJ counts as (n+I)+2l(m-l-l)/2J zeros if
.lln :'1 changes sign in every neighborhood of [I/. InJ, and it counts as
n + 2l(m - 1)/2J zeros otherwise.

Remark. If.l' E So vanishes identically on [I I' II t I J then, necessarily. .I'

IS In

span [lv! I •... , M I n' l'vt l I I •... , lv!\ n]'

In order for [II' II) 1J to be an interior interval we must have j -n?: I and
j + I ~ N - n, i.e..

n + I ~ j <i + I ~ N - II.

This shows that the zero-count for interior intervals is consistent with the
zero-count for endpoint intervals since there are at least n subintervals
[II' II! 1J S; [II' IAJ before [II' III IJ and at least n such subintervals after
[II·II+l].

( 1.3) DEFINITIO;\l [9]. 1, (.I') counts the zeros of a spline .I' In the
interval I according to the procedure outlined above.

(1.4) THEOREM [9]. Using the counting procedure outlined ahol'e,
1 rfJ r,l (.I') ~ N - n - I fi)r a// .I' E So, .I' 'i 0, and1[llh1 (5) ~ N + 11 -- I fi)r all
S E S. s 'i O.

(1.5) DEFI>JITION. A perfect spline P of degree n on [a, hJ with knots
I I < ... < I A is a spline of degree n (see (1.1) with n - 1 replaced by n)

such that for /: = ± 1, I o := a and Tv I 1 := h

tE(Ii,Ii+l) (i=O, .... N).
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The set of such perfect splines will be denoted by

We now turn to zero-counting for differences of perfect splines of degree

11 and splines of degree 11 - 1.
Let PE·;;>l,I, .... L .. ) and IES('I' .... Tv) he given. Since IP''''I == I in

(a, h) \ : T I' .... , v: it follows that P - I does not vanish on a subintervaL
i.e., it has only isolated zeros. Fix ~ E [a, h]. If

(P_.\)(~)= ... =(P __ I)'nI l'k)=O, (P-I)I''''(~)f:.O,

then ~ is a zero of order (or multiplicity) In, provided c; is arbitrary and
m~I1-2, or m~n and ~ is not a knot. If (P-I)Ii)(~l=O (j=O, ... , n--2),
and ~ coincides with a knot then ~ is assigned a multiplicity which is one

of n - I. n, n + I as follows:

(1.6) If (P -\ t' 2) does not change sign at ~ then the multiplicity is 11.

If (P -.I' jI" 2, does change sign at ~, then the multiplicity is n - I if

otherwise, it is n + I.
Zeros of order greater than n - 2 will he referred to as higher-order ::ero.\'.

( 1.7 l LEMMA. Let P E .;;>( T I ' .... T\) and I E S( TI ' .... 'v) he given. Then
(or each °~ /< In ~ N + 1 Ire hare

2'[ r/I", I (P -.\') ~ (m - /) + (n - I).

ProoF For n = 2 the lemma is easily verified; in this case zeros of orders
1, 2, and 3 may occur. Applying this result to (P -.\' lill 2 1, we see that it

has at most In - / + 1 zeros on [r t , Till], and the lemma then follows via
Rolle's Theorem. I

In particular, P - I can have at most N + 11 sign changes in (a, h). This
shows that the space spanned by S u: P} is a WT-space, i.e., P is
gel1era/i::ed convex with respect to these splines [7, 12]. This fact, however.
will not be explicitly used in the following material.

If a spline (in any of the forms described above) has the maximal
number of zeros allowed in a given interval, then we will follow the usual
convention and say that it has a full set of zeros in that interval.

Suppose that P -.\' has a higher-order zero in a knot rio Then
(P - s )1" 21 vanishes at T I and has an inflection point there, going from
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strict convex to strict concave, or vice versa. This determines the behavior
of the one-sided derivatives (P - s) I~ 1I( I J Set

The following situations may occur (see Figures I (a )-(d):

(1.8) (P-sjl'l 21 changes sign at Ii' Then either

(a) p >0 and P+ <0 (Fig. I(a)), or

(b) p :::;0 and PI ?O (Fig. I(b)).

(1.9) (P-sjl'l 21 does not change sign at II' Then either

(a) P >0 and p+?O (Fig. I(e)), or

(b) P ,,; 0 and P , < 0 (Fig. I(d )).

The following definition is useful in describing these situations.

(1.10) DEFINITION. Let P-.\' have a higher-order zero in a knot I/. If
P ,,; 0 then (P - s )(11 11 has a discretionary :ecru in I/: if P + ? 0 then

/
/

/

T,

(al

/

) d. (i) = 1, d T (,) = 1

/
T,

(b)

(e)

FIGleR[ I

i
I d (i) = 1, d ~ (z) = a

(d)
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(P-,IY' Ii has a discretionary zero there. If (P-s)'" I' or (P-s)';' I)

vanishes at a discretionary zero we say that the zero is laken on.
The number of discretionary zeros (either 0 or I) of (P -- s )1;' II and
(P-S)I" I) in I, is denoted by dt(i) and d (i), respectively.

Thus,d,(i)=1 iffp, ~Oandd (i)=1 iffp :(0.
Figures I (a) (d) show possible configurations of (P s II" 21 if P - s has

a higher-order zero in I" 1 :( i:( iV, with the corresponding values of d + (i)
and d (i).

A much more precise statement may he made about the zeros of P - s
on open intervals, given information about the zeros in the endpoints. In
order to prove the main theorem of this section, a theorem of Budan
Fourier type, we first recall the following notation

(1.11) DEFI~ITI()"i. S t (\11' .. ., xJ denotes the maximal number of sign
changes in the sequence XII' ... , X". where a zero entry is allowed to be + I
or -I.

The next lemma follows immediately from Definitions (1.10) and (1.11)
(see also Figures l( a) (d)).

(1.12) LEM\1A. Lei P and s he as in (1.7), and assume Ihal P-s has a

higher-order ::ero in 'i' 0:( i:( iV + I. Then

d, (i)=S'((P-s)';' 11('1)' PI;')(I,)).and

d (i)=S+((-II" l(p_S)I" II(II),(_I)"PI")(,,)).

We now record several properties of S' (\ll' ...• x,,) that will be used in
the proof of ( 1.13).

(i) If XII = ... =xi=O then

S J (XII' ..., x,,) = i + I + 5" (x, ii' ...• x,,).

(ii) If .1'1#0 then

S I (XII •.. ., x,,) = S ' (XII' ... , x,) + S' (XI' ... , x,,).

(iii) If x,=O then

S' (.I'll, ... , x,,) ~ S J (.I'll ... ., x,) + S J (X i - .. ., X,,) - I.

(iv) For all XII ..... X"

S t (XII' .... x,,) + S 1(.1'0' - X I' .... ( - I )".1',,) ~ 11.
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If X" = 0 then

s+ (XO' .... X,,) + S ~ (Xo• - XI' .... ( -I )" X,,);:;: II + 1.

77

The following theorem provides the kind of precise zero-counting needed
to prove the main theorem of this paper.

(1.13) THEOREM. For PE ;;P(T I • •• " Tv) and .IE S(T 1 • •••• Ts ) wc harc

-.11i1hl(P-.I)~N+I1-S+((P-s) (h) ....• (P-s)I"I(h))

-S+((P-I') I (a). -(P-s)'+ (a) . .... (-I )"(P-.lf'l(a)).

( 1.14)

Proo( We first introduce the following convenient notation: For fixed
T i and O~I<III~n, set

S,+u, 11I):= S+((P-S)i1I(T i )..... (P-S)lml(T,))

+ S + (( -1 )!(P- .I)I;I(T,)..... (-I )'''(P- ,I)I;"I(T,)).

The proof initially follows the lines of [6, Proposition I]: We apply the
Budan-Fourier theorem for polynomials to (P-s)llt,.r, II for each i, then
sum over i and include the zeros at T, of multiplicity, say, l1I i . We observe
that the left-hand side of (1.14) differs from the right-hand side by a
quantity L:v~1 T,,(T i ), where T,,(T i ):=S,I(O,n)-III,-n+L and the proof
is completed by showing

S,' (0, n);:;: 111, + 11- I. (1.15)

Suppose first that l1I i satisfies 111, ~ 11 - 2. Then, by property (i) above,
S,'(0,n)=2I11 i +S,+(Jll j ,n). If (P-.I)I" 21(T,) is nonzero, property (ii)
yields

S,+ (mi' II) = S,+ (m" n - 2) + S,+ (11- 2, II);

otherwise, (iii) yields

S,+(m" n);:;: S,+ (m" 11- 2) + S,+(II- 2, II) - 2.

Thus. if(p-s),n 2)(T i ) is nonzero, (1.16) and property (iv) give

S,' (0, II) = 2111 i + S/(III" 11- 2) + Sit (11- 2, II)

;:;: Ill i + II - 2 + S/ (n - 2, n).

(1.16 )

( 1.17)

One easily checks that p1nl(T,)pl;'I(T;)<0 implies S,'(n-2,1I);:;:L hence



78 D. ZWICK

(1.15) is valid. If (P-S)II/ 21(1
1
)=0. then from property (i) we have

5/ (n - 2. II) = 2 + 5/ (n- 1. II). hence from (1.17) we get

51' (0. II)? 211I 1+ 5,' (Ill,. II 2) + 51' (II - I. II)

? 11I 1 + II - I + S'/ (1/ 1. II) ? Ill, + 1/- I.

Therefore. (1.15) is valid here. too.
Now suppose that I, is a higher-order zero. Then (p-s)Ii'(I,)=O

(j = O.... , II - 2). hence from property (i) we have

S'I' (0. II) = 2(n- I) + '\' (II - 1, 1/).

It thus suffices to show

11I
1
~ II - I + 5/ (n -- 1. II).

Note that (1.12) implies

S/ (11- L 1/) = d I (i) + d (i).

By our definition of higher-order zeros we always have

( 1.1 X)

( 1.19)

thus (1.19) holds. and the proof is complete.

We now list several coroillaries of ( 1.13). Applying the proof of ( 1.13) on
the interval [11. II/J yields

(1.20) COROLLARY. Let P ([lid s he ([S in (1.13). Theil jiir 0 ~ I < III ~

N + 1 we IUll'e

5(r!f",tlP-S)~III-I+II-1-5' ((P --.1) (11/,)..... (P-.I)'I/I(I I11 ))

- 5 ' (( P - s)" (11). (P -- s)', (11) • .... ( - I n P - S )I;II( 1 I))'

An important consequence of (1.20) is that the maximal number of zeros
of P - .1' on an open interval bounded by higher-order zeros is independent
of whether or not any discretionary zeros are taken on.

(1.21) COROLLARY. Lei P ([lid s he as ill (1.13). ([lid a.l.ll/llle Ihal P s
h([s ([ higher-order ::ero in II ([lid in 1 11I (0 ~ / < III ~ N + 1) Theil

!l,,, I (P s) ~ III - / - 11 + 1- d (Ill) d _U i

COllscql/ell t /'\'.

Ill? / + 1/ - I + d (til) + d , U).
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( 1.22) COROLLARY. LeI P and I he al in (1.13). If P~ I sat is/il'l
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(j= 0, .... n ~ I) (1.23 )

and P - I has a higher-order :ero in T I Ihen

n + d (i):S; i:S; N - n + I ~ d . (i).

Corollaries (1.21 ) and (1.22) show that if P - I has several higher-order
zeros then these zeros must be sufficiently separated. This should be kept
in mind when such assumptions are made in Section 2.

2. THE O"lE-SIDED ApPROXIMATION PROBLEM

In this section Po will be a fixed clement of .1'( TI.... , Iv) satisfying

po?°in [a, h]. and p~/I(a) = P)/'(h) = 0 (j = O.... , n - I ). (2.1 )

Conditions (2.1) imply that Po(t)=(I/n!)(/~a)" in [a,TI] and Po(t)=

(1 In!)( h - t)" in [Iv, h]. from which it follows that Po does not vanish in
(a, T1] U [I.v , h). Moreover. since Pi;" == 1 in (a, T I) and (- I)" Pi;' 1 == I in
(Tv, h), we conclude that f = I in Definition ( 1.5) and that IV ~ n is even.

We wish to approximate Po from below in the L I-norm by nonnegative
elements of S. Since o:s; I :s; Po implies 1==0 outside of [T I' Tv] (due to
conditions (2.1)), we may restrict our attention to I E So. Thus, our
problem may be expressed as

,,,,h

Minimize I (Po-llsubjectto.lES p := :IESo:O:s;S:S;Po ).
'0

In this section we prove the existence and uniqueness of the best L I ­

approximation So ESp to Po. While the existence follows from elementary
compactness considerations, the proof of uniqueness is complicated by the
possibility of higher-order zeros of the error function Po - .1 0 in the knots.
The standard procedure, which we follow in principle, is to show that the
error function must have a full set of N + n zeros in [a, h] if 1 0 '== Sp is a
best approximation. One then shows that if .1'1 is another best approxima­
tion then not only does PO-s i have N+n zeros, but Po-Io and PO-s i

share a set of N + n zeros, counting multiplicities. Therefore, .1'1 - So has
N+n zeros in [a,h] (and N-n in (TI,T N)), which is only possible if
II == So. The problem with this argument is that if a higher-order zero
coincides with a knot, the difference .1 I - So need not inherit this zero with
as great a multiplicity. To see an example of this phenomenon, we need

6... () 6-::' 1-(,
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only consider two splines, So and s I. of degree 1 that share a double
zero in a knot Ii (i.e.. they vanish at Ii and do not change sign there). If
S := Sl - So changes sign at I, then s has only a simple zero in I,. This
shows that, in contrast to polynomials, two splines may share a full set of
zeros without their difference vanishing identically.

Hence, in order to prove uniqueness we must not only show that the
error function for the best approximation has a full set of zeros, we must
also consider what happens if higher-order zeros occur in knots. The bulk
of the work in this section is therefore devoted to this task.

The next two lemmas are simple consequences of Taylor's Theorem. For
completeness we prove the second of the two.

(2.2) LEMMA. Let I g E CJ [a, h] he given and let f have a ::ero ~ E (a, h)
o/even order m ~ j. If 0 ~ g ~ f holdl' in [a, h] then g vanishes in ~ with
multiplicity at least m. IfI' is even and fUI( ~) = 0 (i = 0, ... , j), then this holds

f<ir g as well.

(2.3) LEMVlA. Suppose that fEC[a,h] wnishes in ~1, ...,~,E(c,d)

with exact e1'en orders m, ~ j, and that g E ('I [a, h] has ::eros in ~I with at
least the same multiplicities. It: additionally, f and g are nonnegative in
[a, h] and f has no other ::eros there, then FIf' some c > 0 \\'1' have

cg~f in [a, h].

Proo( For simplicity, we suppose that s = 1. If (2.4) does not hold then
for each k = 1. 2, ... there is a point t k E [a, h] such that

(2.5 )

By going to a subsequence we may assume that tk ---+ to E [a, h]. hence from
(2.5) we get O;?f(to), i.e., f(to) =0. Thus, to=~I' Expanding (2.5) about
~ 1 and using the fact that ~ I is a zero of even multiplicity /11] yields

with 0 < {)k, Ok < I. Thus, as k ---+X we get P""I( ~ I) = 0, a contradiction to
our assumption that ~ I is a zero of f of exact order III I'

(:~.6) DEFINITION. For fixed 1~ / < m ~ N
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denotes the subspace of splines vanishing outside of ['f' '"J. If m - n ?: I
then SOil./II} is spanned by [M f , ••. , M/II II J and thus has dimension
/I1-I-n+l.

The following lemma follows directly from (1.4).

(2.7) LEM\1A. Suppose that, fi)r .I E SIb Po - .I has higher-order :eros in '/
and in '/II (0 ~ 1< m ~]If + I) and has a fidl set of ::eros in ('f' '/II)' Set
1:=I+d, (f). 111 :=m-d (m). lj'uESo(i.II,' vanishes at the :eros oj'Po-s
in (T/. Till)' Irilh the same mulliplicitie.\, then u ranishes identical/y.

Proot: We note that if Po - .I has a full set of zeros in (, f, 'III) then

2(T/.r",}(PO- .1') = m- 1- n + I - d" (f) - d (Ill) = dim SOil~"/)'

It thus follows from (1.4) that any element of SO(i."Jj that vanishes at the
zeros of Po - .I, with the same multiplicities, vanishes identically.

Our next lemma shows how to construct nonnegative clements of SOil.lII}

with a given number of zeros.

(LX) LE\1MA. LeI points ,/«, < ... <~,<TII' and even inlegerS!il 1 he

given, such that 2~ml~n-2 if ~IE{T/'I""""' I] and othenrise
2 ~ Ill, ~ n. Assume Ihat L; I m I ~ 111 - 1+ n. Then there is a nonnegative,
nonlrivial elel11ent UE SOil./II' vanishinR al ~; Irith l1Iul1iplicitv (at leasl) /11,

(i = 1. ... , .I).

Prool To construct U we "smooth" M f , ••• , Mill "by convolution with
the Gaussian kernel (see, e.g., [7J) with parameter I; > O. In the trans­
formed space span {M~, "', M~n nJ of analytic functions we may uniquely
define elements with m - n - 1+1 function and successive derivative values
(the smoothed space is an "ET-space"). In particular, we may define a
nonnegative element u, = L'/~ /' aJ MJ with zeros at ~/ of multiplicity 111 1, By
requiring L laJI = 1 for all t > 0 we guarantee that a limit point exists as
dO (through a subsequence) and that the resulting function u is nontrivial.
Moreover, since {u:1

)} converges uniformly on ['1"/11 J to uli ) for
o~ j ~ n - 2, and (U~" ))} converges uniformly on compact subsets of
('f' ,,,J\ {'I+ I' ... , 'm I} to u lll II, it follows that u has the zeros ~/ with
multiplicities at least 111/. I

(2.9) LEMMA. Suppose thai, for .I' ESp, Po - .I' has higher-order :eros in
T/ and in T/II (0 ~ I < m :( N + I ), and has no :eros of hiRher order in any of

Ihe knOIS 'f I- I' ... , '/II I' If Po - s fails to have a fidl set of :eros in [, f, 'III J
Ihm there is a nontririal u E SOil III) \rilh 0 ~ u:( Po - .I ill [a. h].
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Prooj: Let [:=I+d+(/) and Iii :=m--d (m). From (1.21 1 we have

-1IT"",)(Po-sl~m I--/l+ I-d, (I)-d (m)=dim SO)/III)'

Suppose first that d+(I)=d (m)=O. If (Po-sllrr"",] fails to have a full
set of zeros then it must lose at least two zeros in (t /. till)' i.e ..

Lemma (2.8) guarantees the existence of a nonnegative, nontrivial l' E SOl! III )

with at least the zeros of Po - 01 in (t /. 'Ill l, counting multiplicities. and,
from (2.3), there is a c > 0 for which u:= cr ~ Po - 01 holds in [t /. till].

Since u == 0 outside of [t I. tllJ. we have 0 ~ u ~ Po - 01 on all of [a. h].
The other cases will be treated in a similar way. For the sake of brevity

we only consider the case in which d (m) = d ) (I) = I. the most difficult of
the remaining cases. If (Po - 01) I r'1'",] fails to have a full set of zeros then
either both discretionary zeros are taken on and Po - 01 loses at least two
zeros in (t /. till)' or at least one of the discretionary zeros is not taken on.
In the first case we ha ve

-1lr;. I(Po-sl~m--1 /l-3

and in the second case we have

(2.10)

(2.1 I I

When (2.10) is valid we construct u as before, bu t in the (m - 1- /l - I )­
dimensional space SOlilll)' in which nontrivial clements may have up to
m -1- /l - 2 zeros; when (2.11) holds we construct u in either SOil t 1.111) or
in SOI/.m I), depending on whether the discretionary zero in '/ or ',ll is
taken on. In either case the dimension is m -1- /l and we may require u
to have at most m -1- n - I zeros. The proof is now advanced as before.
with the aid of (2.3). I

We are now prepared to prove the main theorem of this paper.

(2.12) THEOREM. Po has a unique hest L i-approximatio/l sofrom S p. The
error function Po - So has a full set oj' :::eros in [a. h]. and ij' any hifiher-order
zeros of Po - So coincide with knots. then all discretionary :::eros oj'
(PO-s)11I 1) and (Po-S)I~ il are taken on.

Prooj: Because So is finite-dimensional and 5'!' is nonempty (.I' == 0 is in
S p). an elementary compactness argument yields an element So ESp that
minimizes S~ (Po-s).

From (2.9) it follows that Po - .I n must have a full set of zeros on each
interval [t /. till] (0 ~ 1< m ~ N + I) bounded by zeros of higher order, in



ONE-SIDED APPROXIMATION PROBLEM 83

which no other higher-order zeros coincide with knots. For, if this were not
the case, we could find a nontrivial II EO So satisfying 0 ~ II ~ P o - So' But
then So + II would be a better approximation to Po from Sp, in contra­
diction to the optimality of So. In particular, Po - So must have a full set of
zeros in [a, h] and all discretionary zeros must be taken on.

Now suppose that .1'1 EO S" is also a best approximation to Po. Then
.I' := ~(so + .1'1) is also best since

Po-S = ~(Po-.lo) + {(Po - .1'1)'

The nonnegativity of the terms in (2.13) implies

(2.13 )

(i = 0, I),

hence from (2.2), and from the definition of the higher-order zeros, both of
Po-so and PO-s 1 share the zeros of Po-s (and have no other zeros,
since all three have a full set). If Po - s has no higher-order zeros that
coincide with knots then we easily see that s I - So has at least N- 11 zeros
in (r I' r.v ), and therefore .1'1 == So. Otherwise, we restrict our attention to
intervals [r/, r",] (0 ~ 1< m ~ N + 1) bounded by higher-order zeros of
Po - .1, in which no other higher-order zeros coincide with knots. On each
of these intervals Po - s has a full set of zeros, which are inherited by .1'1 - So

with their full multiplicities. Hence. from (1.4), .1'1 - ,1 0 must vanish
identically. Thus, .1'1 == So on all of [a, h] and uniqueness has been shown.
This completes the proof of the theorem.

Renwrk. It is an interesting consequence of (2.12) that if Po - So has
a higher-order zero in a knot r, for which d (i) = d + (i) == I, then
(Po- .1')1 11 II(r,) = 0, so that sg' II is continuous in r,. Thus, if i is even and
Po - So has a higher-order zero in r j, then the coefficient of (r i - t)1;' I) in
the expansion (1.1) must vanish (this behavior is already present in the
case 11 = I, where a piecewise linear perfect spline is approximated by
piecewise constant splines).

3. DETERMINANTS AND I'JTERLACING CONDITIONS

In this section we show that the bounds on the number of zeros derived
in Section I imply that the zeros and the knots of Po - So must "interlace"
in a certain manner. We then apply the Schoenberg-Whitney Theorem to
prove that a matrix involving these knots and zeros is nonsingular. Certain
modifications must be made to the determinant that one usually encounters
in such situations, in case higher-order zeros coincide with knots.
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(3.1) LEMMA. Let P E:Y and s E S he giten, and leI P - s satisj\' (1.23 l.
It P-s has :::eros a<~1 < ... <~,<h with multiplicities IIII~n+ I, such
that n + I;" I III, = lV, then

I); II J (i=I. ... ,r), (3.2)

where l(i) := I lie I 111 1 , 1(0) := O. Equalitr holdl in (3.2) on!r if

(a) 1I1,=n+1 (llld~I=TII'I=TII' I'-lill'

(b) 1I1,=n, ~,=T{I')' and d (I(i)) =0. or

(c) III1= n, ~1= Til' 1,. 'I I 1 = T IU, , I' and d. (I(i) + I 1= O.

Proof: All of these assertions arc const:quences of (1.7) and (1.21).
Suppose, for example, that ~i< TII'I' Then P-.I has at least n + I'{ 1 11I /=

n+/(i) zeros in [a, Tlull However, by (1.7),

hence there is a contradiction. The same contradiction results if ~,= Til 'I

and 1n,~n-1. If ~i=TII'I' m,=n and d (I(i))= 1, then (1.21) asserts that

·.:II '0. 'il/I)( P -.1) ~ I( i)- n + I - d + (0) - d (I(i)) = l(i) .- n- 1= l(i - 1) - 1.

But P - s has at least I~ I( 111/ = l(i - 11 zeros in (a, T I",), again a contradice

tion. An analogous argument shows that ~, < I 11/ I) i // I I if III I ~ n - 1, and
if Ini=n then ~,=III' II 'It I =TII,I . I is allowed only if d+(I(i) + 1)=0.

Now suppose that 1I1,=n+ 1. As before, ~i<TII'I=I/l1 II '1j I implies
that P - s has at least n + l(i) zeros in [a, TIUll a contradiction to (1.7),
and ~/>TIl!1 implies that P-s has at least n+I'/_iJn;=lV-/(il+ll+ I
zeros in [T 1111' hl in contradiction to (1.7), Th us, ~ i = TIU) (no contradiction
arises here SlI1CC ~i counts as at most 11 zeros on each of [a, TII,I ] and
[TIUI,h]), I

(3.3) THEOREM. Let So he the hesl approximation to Po jiiUl1d in (2.12 l,
and lel Po - So have the :::eros a < ~ I < ... < ~/ < h with lIIultiplicities III,

(i = 1, ... , 1'). Then the "interlacing ('onditiol1.l" (3.2) hold, \lilh equalitr onlr

it

(a) n is odd and fIl, = n + 1, in which ('ase ~,= I{II) = IIII II I // j I' or

(b) n is even and nll=n, in which case hoth ~I=IIIII and ~,=

Till 11+//+ I =I/III+I are al!ml·ed.

Proof: Since So is in So and Po satisfies (2.1), the assumptions of (3.1 )
are satisfied and therefore the inequalities (2.12) are valid. Since all fill are
even, In; = n + 1 only if n is odd, thus (a) follows from (a) of (3.1).
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Similarly, if m 1= 11 then n must be even. In this case, if ~,= 'Iii I then, since
l(i) is even, d + (/(i )) = I and d U(i)) = 0, and if ~ 1= 'Iii I + I then,
since l(i) + I is odd, d U(i) + 1) = I and d. (I( i)+ I) = 0. These are in
accordance wi th (b) and (c) of (3.1 ).

(3.4) DEFINITION. Let a<~I< ... <~, and m,"Sn+1 be given, with
n + L:~ 1111, = lV, and suppose that the interlacing conditions (3.21 are met.
The determinant

(
0, ... , n - 1, ~ I. ' ••• , ~ '\

'I' ..., '\ )

is defined as follows:

(i) If 111 1 "S II - 1 for all i = L ... , r then the determinant is defined as

'\

(It - (.1 )II~ /1/1

(3.5 )

(ii) Ifl11 i=n for some l"Si~r (so that '/1i1~~/"S'/lil,l) then the
determinant is defined as above, with the conventions

~i='/IiI=('/IiI-t)(JIII_.',:=O,

~ 1= '/lil + 1 =(, Iii 1+ 1 - 1 )l~ 110 c, := I.

(iii) If mi=n+ 1 for some 1 "Si"Sr (so that '/1i)=~i='/1i 11+II+tl

then the determinant is defined as above, but with l11 i set to II and the
column with '/111 deleted.

(3.6) THEOREM. Let P E."Y alld s E S satish' (1.23) and let a <
~ 1 < ... < ~, < b be the zeros oj" P - s with multiplicities m i "S n + 1 such that
n + L:~~ 11111 = N. Then the determinant

D := (0, ..,n - I, ~ I, ... , ~r)

'1' ... , t.v

defined in (3.4) is positive.
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Proof: If all nJ
l

arc at most n - 1 then this is a standard consequence of
the Schoenberg-Whitney Theorem (see, e.g.. [9]). which states that D IS

nonzero (i.e., positive) iff

(i=I. .... N n),

where Xl ,s; ... ,s; x\ "are the ~I repeated according to their multiplicities.
We now show that if nJ l = n or nJ l = n + I for some i then D may bc
factored into a product of subdeterminants of the same type. for which all
the corresponding nJ , are at most n - 1. The assertion of the theorem then
follows from the preceding remarks. We consider the following cases:

Case 1. /Ill = N; then '111!,s; ~,,s; '/(1) ( I' Suppose first that ~I = '/1l(' In
this case it is not hard to see (with obvious notation) that

D = ("0, ..., 1/ - L ~ 1..... .: I I,)' (,0..... 1/- I. ~ I , l' .... ~ 1 ') . (3.7 )
r I ~ ... , r I( I) i' T II I) • I' ...• T.\ /

For clarity we make the following remarks. First. if ~I = '111(' then the
matrix whose determinant is D has block structure. provided the entry with
('IIi)-~I)(~ is set to zero (otherwise, D=O). Secondly. the first n rows of
the matrix corresponding to the second determinant in the product are
brought into the form shown in (3.5) by elementary row operations.

Similarly, ifr Iii I < ~ I ,s; 'Ilil . I. then, by setting the entry with (, Iii I • (- .: /1 11
,

to one. we get (3.7).

Case 2. I11 I=n+ 1; then ~1='/II)='11i II ", l' In this case we delete
the column with '/(1) and set 111, = n. Again, the relevant matrix has block
structure and. via elementary row operations on the second block. we get

D= ('0, .... 1/ - I. ~ 1 ' ... , ~, 1\ • (/,0 . .... 1/ _. 1. ~ I, I' .... ~1\,),
, I .... , '/(, I 1 ) r II I I i I' .... r \ I

The factoring process described in Cases 1 and 2 may now be applied to
each of the subdeterminants. as necessary. and the proof is completed as
outlined above. I

The results of this section reveal something about the zeros of non­
negative perfect splines. The following corollary is a conseq uence of these
results and (2.12).

(3.8) COROLLARY. Let Pu E ;;1'(, 1..... , \) he nonnegative in [a. h] and
satisfy (2.1). Let Pu have zeros a < /71 < ... < 1], < h \rith e['en multiplicities
III (i = L ... , s). Then there are points a < S1 < ... < SI < h and even integers
2 ,s; 111, ,s; 1/ + I such that

I I, cl" " I
1/71 ..... /7, J - ('= 1· .... ~ 1 I'

Il,,s; nJ j if /7 1= CI' and the conclusions of (3.3) and (3.6) hold.
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4. AN ApPLICATION OF SFMI-[I'FINITE PROGRAMMING

The problem
_/>

Maximize I .I subject to .I ESp

'"

87

(P)

may be viewed as a semi-infinite linear programming problem (i.e.. a finite
number of variables and an infinite number of linear constraints) of the
type treated in [2]. This problem has an associated "dual problem"

,,.,Ii

Minimize y*( Po) subject to y*(s):? I .1'.1:/.1 E So. I:? 0
~, (/

(0)

where y* is a linear functional on the space spanned by So and Po. Clearly.
the infimum for (P) is no more than the supremum for (0). [f

./>

I .1'=l~*(Po)
',1

for some .V ESp and some .1"* satisfying the constraints, then .V and .i"* arc
optimal for (P) and (0), respectively. and yield the same optimal values.
[n this case we have

_/>

f·*(Po) =i*(,q = I f
'"

Let us briefly consider the case n = 2. The perfect spline Po is either
positive in (a. h) or it has a finite number of double zeros that do not coin­
cide with knots. If Po vanishes at c and at d. with no zeros in (c. d). then
we may consider the analogous problem on the interval [c. d] with Po set
to zero outside of (c. d). [n this way the problem (P) splits into a finite
number of subproblems for which P> 0 on the open interval. Thus. let us
assume. without loss of generality. that P is positive on (a, h). In particular.
we have P> 0 on [T I. T\] and thus the so-called Slater condition is
satisfied on this interval [2]. It follows that (P) and (0) are solvable and
have the same optimal values. We note that, for n = 2, the functions M

I
are

"hat functions"-piecewise linear and nonzero in (T i' Ii I 1) with the peak at
11 + I-and therefore an element s = L ~\~ t ('I M I E So is nonnegative precisely
when all of its coefficients ci are nonnegative. In [2] it is shown that (0)
may be expressed as

For~I'''''~IIIE[TI,TV]minimizeI d,Po (¢;)
i= I

,/I

subject to((:?Oand I diM/(U:? I M I = 1 (j= l, .... N-n). (D)
, I
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For every optimal solution l(di,s,))t I of (D') and l(/:/\ /I of (P) wc
then have

\ II _~(,

I eI,P,,(S,)= I (;= II".
, I i 1

•-a

with .1 0 = L/ t (IMr Moreover, [(d,. S,)} and: (/) are optimal if and only
if

and

V ./1

eI, > 0 => Pols,) = I (/I\4/(S,) = .lo(s,l.
/ I

JlI ./1

(, > 0 => I d,M/(si) = I = I MI'
, I

(4.1 )

(4.2)

Since (4.1 ) is satisfied at most once in each interval [T 2,' T 2, 1J, and not
at all in (T 2, I. T 2,). we have m~k:= (N 111/2. Clearly. Po So must have
a zero in each interval [T 2,. T2, I I]. since otherwise .1 0 cannot be optimal.
and hence 111 = k. Since M 2, vanishes outside of (T 2" T2, , 2). the condition
L;~leI,M/(S,)~1 can only be satisfied if s,E(T 2"T"II) and eI,>O
U=I .... k). From (4.1) we then have .lo(S,)=Po(s,) (and thus
.1';) (Si) = P;)(Si)) for i = 1, ... , k. Moreover,lo(s,) = P"(~i) > () implies that at
least one of (2, I and (2i is positive. If both are positive then (4.2) makes
it easy to compute (, from the requirement M 2,((,)=M2, I(~J (the sum
in (4.2) has only one nonzero term).

ff all the (; arc positive then the nonnegativity constraints are mactive
and .1 0 coincides with the best one-sided approximation to Po from below
(without the nonnegativity restriction). The condition (4.2) then yields a
"Gaussian quadrature formula"

k ,h

I dis(~i) = I s. VIE So.
I I

as has been thoroughly investigated in [7]. In this "unrestricted" problem
at most one of a pair (2, I' t2i can be nonpositive (under the assumption
Po> ()): if one of these is negative then the coefficient with the same index
in the solution to (P) must vanish.

For II> 2 the situation is more complicated, in part because a non­
negative element of So may have some negative coefficients. so that a
simple description of the set : s E So: s ~ 0: is not available.

According to the results in [7]. the unrestricted one-sided problem has
a solution .1: such that Po - .1' has exactly k double zeros, ~ I •...• ~k' The
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spline ,~ is uniquely determined by the conditions §I/I( ~,) == P;/I( ~,)

(i = I, ... , k; j = 0, I) and a Gaussian quadrature formula exists for So.
based on ~ 1 ' ••• , ~ k '

In general, the solution 10 to (P) will differ from f Indeed, if Po has any
zeros of multiplicity greater than two, then Po - So must have higher than
double order zeros, as well, in contrast to i Of course, Po may be decom­
posed as above, but only at zeros of even order 11 or 11 + I. Even if Po is
positive in (II, h) we cannot expect So and .~ to coincide.

We now continue our study of problems (P) and (0) for 11 > 2. If Po is
not positive then the Slater condition may not be employed to guarantee
a solution for (0) and the equality of the optimal values. Moreover, in
general, Po may not he decomposed as was the case for 11 = 2. However, a
technique applied in [3] may be used to reduce the problem to one for
which Slater's condition holds. This is done as follows.

If 11 is even and Po has zeros of order 11 (which occur between knots)
then we split the problem at these points, as with 11 = 2. If 11 is odd then we
can do the same for zeros of order 11 + I (which occur at knots). Thus,
without loss of generality, Po has only zeros of even order at most 11 -- 1.
say at III < ... < II, with multiplicities Ii,. Set

W(x):= n (x -IIY",
, I

i/ := 1/;W,

where 11 E S" (hence il is well-defined). The condition 0 c(; 1/ c(; Po is
equivalent to 0 c(; i/ c(; Po and now Taylor's Theorem yields Po> 0 in (II, h)

since we have (locally) factored out the zeros and all the ii, are even. We
may therefore consider the problems

"h ,',Ii _

Maximize I 1/ = I i/U) subject to 0 c(; i/ c(; Po.
·!u "'0

with Po> 0 in (II, h), and

,,,/1

Minimize l'*(Po) subject to y*(i/);:;: I ilw. Vii;:;: 0
'u

Here, W is treated as a weight function. Now Slater's condition is satisfied
and thus (15) is solvable and both (15) and (P) have the same optimal
values. Moreover, if .v* and il are optimal, then

r
h

.i"*(Po)=.f'*(i/)= iiw.
~. (J



90 D. ZWICK

If we define y* by r*(u) := .~*(i{) for u = i{w then the maximum of L: u is
achieved for some Uo E Sf' such that

U= 1. .... 1:)=0..... Jl,~ I) (4.3)

and there is a linear functional r* on the subspace

of splines satisfying (4.3) with

~h

y*(u) ~ I u.
'"

Vu ~ O. and r*(Po) ~ r*(u).

We thus have the following theorem.

(4.4) THEOREM. SO E 5 f' is a solution to (P) iff there is a linear functional
Q on 501' such that. ff)r all s E 51),

and

,./>

Q(s)~ I .\. Vs~O.

,~h

Q(Po) = Q(.\o) = I .1 0 ,
"u

Proof If Q satisfies these conditions then for all .I' E Sf' we have

.f, .• f,I So = Q(so) = Q(Po)~ Q(s) ~ I s.
~. II 01 (/

and thus So is optimal. The converse has been proved above.

5. MONOSPUNES AND QUADRATURE FORMULAS

In the unrestricted one-sided approximation problem alluded to in the
previous section, the best approximation yields a linear functional based on
the zeros of the error function, which integrates each element of the spline
space exactly. Such a functional is called a quadraturej(mnula [7, 10]. The
error when applying such formulas to functions in en [a, hJ is given by an
integral formula whose kernel is a monospline. In this section we investigate
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the role played by quadrature formulas and monosplines in the solution of
our problem.

(5.1) THEOREM. Suppose that, jiir So e S p. Po - So has no zeros of order
n + 1. Then So is a so/ulion to (P) iff there is a linearfimCliona/ Q such Ihat,
j(ir a// .I' e So.

,,./1

Q(s)= I s.
'0

Q(Po)?: Q(s).

and

(5.2)

Q( Po) = Q(.\·o)·

Proof If (5.2) holds then for all .I' e S p we have

",h ,,,,h

I So = Q(.\o) = Q(Po)?: Q(s) = I s.
'" u .. (/

and thus So is optimal.
Conversely, let So be the best approximation to Po found in (2.12), and

let ~ I' ... , ~r be the zeros of Po ~ So with multiplicities m,. The positivity of
the determinant in (3.6) implies that the linear system

r 111 1 ,./1

Q(M,):= L L iljM~j I)(;i)= 1 M "
i=- I i= I "u

(/= 1, ... , N) (5.3 )

has a unique solution, provided that mi:S: n (i = 1, ..., r) and that, if m, = n

and ~i=T" then for j=n-1 a right derivative is taken for 1=!U) and a
left derivative is taken for / = /(i) + 1. Thus,

r m j ,.h

Q(s) = L L ;,ljsli 1I(U = I .1',

i 1 .i -'-'- I oJ a

The optimality of So implies that for all .I' e So

.h

Q(Po)= Q(SO)?: I .I' = Q(S),
'0

VSe So.

and the proof is complete. I

Remark. If m i = n + 1 for some i then Q may be defined for the
subspace of So consisting of splines without a knot at the zeros of order
n + 1 of Po - So, to which So belongs.
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Let
./0 (x - t)" I

M(x) := I j dl
'" (11 - 1)!

D. ZWICK

iIi I

( y ")" I

( __ 1)1· "1 I

(II-j)!

II I

La/xl.
i ()

, -- I I -- I

where i'
ll

are the coefficients in the quadrature formula (5.3) and al are as
yet undefined. The function M is a 1Il0110Splille [7.6]. It follows from
results in [7J thatforfeC"[a,hJ withjlll(a)=jlJI(h)=O(j=O.... II-I)

the following "Peano representation" of the error holds

~/) ~/,

I f-- Q(f) = (--I)" I jI"l/vf.
~(J "11

(5.4) THEORD1. For appropriale ao ..... all I' l!Ie lIlol1osplifle M deflfled

ahol'e satisfies

Proof Suppose for the moment that m i:( n (i = I.... , r). Noting that

_(\_._¢,---,)_"- = Q (( x( ,-/-.__. )1"0)! 1./,).L i"I( -I V
(fl j)!

it follows from the standard definition of B-splines as divided differences
that, for 1= 1..... N.

We have seen that the i'lf are uniquely determined by

./0

Q(M{)=I M{
'u

(I = I, .... N - 11 ). (5.5)

thus there are unique [i.'l J and [a l ) for which

(/= L .... N). (5.6)

Since Min) == 1 in the intervals (¢i' ¢iT I), Mis gefleralized COflvex [12,5, 7J
with respect to s;;;r( ¢l' ... , ¢,) (see [12]), which implies

(5.7 )

If nl i = fl + I for some i then (5.5) holds for the B-splines based only on
those 1{ that do not coincide with zeros of order fl + 1 of Po - so, and thus
(5.6) is valid for these points as well. Moreover, M is generalized convex
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on subintervals of [a, hJ with endpoints in [a, h: u [~i: fJI, = 11 + I: and,
since fJI, = 11 + I = ~,= T /lil' with /(i) even, it follows that M changes sign at
these points as well. Thus, (5.7) is valid here, too.

We thus have
r h rh

I (-I)l/p(I/IM=~1 IA1I.
~Il ~(l

Moreover, from the definition of Q and P we get

"h ,,.h 'Of,

I (~I)l/p(!lIM= I P- Q(P)=Q(Po)~I Po,
"Ii "'/I "u

hence (5.2) implies

.h ,,,,/1IIMI=I (p()~s()),
"0 "'0

proving the theorem. I
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